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ABSTRACT: The continuing decline of the summertime sea ice cover has reduced the sea ice path that must be traversed
to Arctic destinations and through the Arctic between the Atlantic and Pacific Oceans, stimulating interest in trans–Arctic
Ocean routes. Seasonal prediction of the sea ice cover along these routes could support the increasing summertime ship traffic
taking advantage of recent low ice conditions. We introduce the minimum Arctic sea ice path (MIP) between Atlantic and
Pacific Oceans as a shipping-relevant metric that is amenable to multidecadal hindcast evaluation. We show, using 1992–2017
retrospective predictions, that bias correction is necessary for the GFDL Seamless System for Prediction and Earth System
Research (SPEAR) forecast system to improve upon damped persistence seasonal forecasts of summertime daily MIP
between the Atlantic and Pacific Oceans both east and west of Greenland, corresponding roughly to the Northeast and
Northwest Passages. Without bias correction, only the Northwest Passage MIP forecasts have lower error than a damped per-
sistence forecast. Using the forecast ensemble spread to estimate a lower bound on forecast error, we find large opportunities
for forecast error reduction, especially at lead times of less than 2 months. Most of the potential improvement remains after
linear removal of climatological and trend biases, suggesting that significant error reduction might come from improved ini-
tialization and simulation of subannual variability. Using a different passive microwave sea ice dataset for calculating error
than was used for data assimilation increases the raw forecast errors but not the trend anomaly forecast errors.
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1. Introduction

The Northern Hemisphere sea ice cover has declined in recent
decades with the largest negative trends occurring in late summer
when the ice edge is in the Arctic Ocean. This decline is well
documented with passive microwave satellite observations and is
simulated by climate models as a response to anthropogenic
forcing, indicating that the downward trend will continue into the
future (e.g., Notz and SIMIP Community 2020). The summer sea
ice poses an impediment to trans-Arctic passage between the
Atlantic and Pacific Oceans. Accompanying the reduction in ice
extent, ice-free corridors have appeared in September in recent
years according to the passive microwave observations. Ice-free
trans-Arctic passages are of interest for marine transport because
sea ice is a major hazard and expense for shipping, requiring
stronger hulls and slower speeds. Significant Arctic Ocean ship
traffic is responding to the reduced ice conditions (Eguı́luz et al.
2016; Melia et al. 2017b). If the current downward trend in ice
cover continues as expected, the sea ice that must be traversed
on ocean passages between the Atlantic and Pacific Oceans will
continue to decline and ice-free corridors will be available in late
summer over increasing durations (Smith and Stephenson 2013;
Mudryk et al. 2021).

Seasonal forecast systems are now being applied to the prob-
lem of supporting summertime Arctic shipping. For example,
Melia et al. (2017a) demonstrated the possibility of skillfully
predicting open-water trans-Arctic passageways. Koyama et al.

(2021) review progress on Arctic ship routing and present a
statistical approach to the problem. Ship routing to and through
the Arctic Ocean involves important considerations in addition
to the sea ice state including waves and severe weather (Inoue
2021). Beyond the presence or absence of ice, sea ice thickness is
important for constraining ship speeds and the ship types that
can operate over a route (Nakanowatari et al. 2018). Unfortu-
nately, reliable summertime sea ice thickness observations are
not currently available (Dawson et al. 2022). To maximize the
potential for validation we set aside these considerations and
focus on prediction of a shipping-relevant metric constructed
from sea ice extent, a quantity with a multidecadal record of
high-quality summertime passive microwave observations.

We will present model hindcasts of the satellite-observed
minimum trans–Arctic Ocean sea ice path (MIP) from July
through October. The MIP quantifies the ice distance}
distance through sea ice concentrations greater than 15%}that
must be traversed when passing between the Atlantic and
Pacific Oceans through the Arctic Ocean. The error in an
MIP forecast contributes to the uncertainty in Arctic Ocean
crossing time because ship speeds are much slower in sea ice
than in open water. The MIP can be calculated directly from
daily sea ice concentration observations for forecast verifi-
cation. We use a quasi-operational forecast system to make
seasonal predictions of the daily MIPs, requiring passage
west and east of Greenland (NW MIP and NE MIP), corre-
sponding roughly to the Northwest and Northeast Passages,
from initializations on the first of May through August. The
Seamless System for Prediction and Earth System Research
(SPEAR) seasonal forecast system, used in this study, has
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been shown capable of making skillful predictions of local daily
summertime Arctic sea ice concentration and derived variables
characterizing the open water period (Zhang et al. 2022),
supporting its suitability for summertime MIP prediction.

Section 2 presents the SPEAR forecast system, the MIP
calculation, and the simple reference forecasts used for
comparison. Section 3 presents forecast skill evaluations using
1992–2017 retrospective predictions and an analysis of the
forecast errors. We determine the placement of the SPEAR
skill between the predictability limit and the skill of a simple
reference forecast based on recent observations. Section 4
summarizes and discusses the conclusions.

2. Forecast system, MIP calculation, and
comparison forecasts

A low atmosphere resolution version of the new SPEAR
prediction system (SPEAR_LO) from the Geophysical Fluid
Dynamics Laboratory (GFDL) is used for this study (Delworth
et al. 2020). Bushuk et al. (2022) found that this lower-resolution
atmosphere version of the SPEAR forecast system had Arctic
sea ice prediction skill comparable to the standard SPEAR sys-
tem (SPEAR_MED) used for supplying forecasts to the North
American Multi-Model Ensemble (NMME; Kirtman et al. 2014)
and Sea Ice Prediction Network (SIPN; Meier et al. 2021). The
system uses recently developed component models such as the
MOM6 ocean and SIS2 sea ice models, also used by GFDL
CM4 and ESM4 climate and Earth system models (Adcroft et al.
2019; Held et al. 2019; Dunne et al. 2020) and a newly developed
ocean data assimilation system (Lu et al. 2021). SPEAR_LO
employs nominally 18 resolution atmosphere, ocean, and sea ice
grids. A summary of the initialization procedures for the ocean,
sea ice, land, and atmosphere is given in Bushuk et al. (2022). In
addition to the standard version of SPEAR_LO we use an
enhanced version, SPEAR_LO/iceDA, initialized with sea ice
from an ice-ocean model ensemble incorporating ensemble Kal-
man filter assimilation of sea ice concentration observations into
the sea ice component (Zhang et al. 2021). Zhang et al. (2022)
show that sea ice concentration assimilation reduces short-lead-
time summer ice concentration forecast errors in the coastal
regions of interest for this study. Although sea ice thickness
is not assimilated, it is constrained to some degree by the atmo-
spheric forcing from the JRA-55 reanalysis used to force the
ice-ocean model ensemble used for sea ice initialization (Tsujino
et al. 2018). The atmosphere and land (and sea ice in standard
SPEAR-LO) are initialized from a SPEAR ensemble run having
SST, atmospheric temperature, humidity, and wind nudged to
historical observations.

The forecasts are made with 15 ensemble members and the
ensemble mean is used for the ensemble forecast. Using the
ensemble mean results in some positive bias to the MIP
forecast at small values as ensemble members increasingly
encounter the nonnegativity constraint. The sea ice concen-
tration data assimilation and primary forecast verification
both use “NASA Team” algorithm sea ice concentrations
observations (Cavalieri et al. 1996). To assess the impact of
using the same dataset for both purposes we shall also present
an alternative assessment of the model with the “Bootstrap”

sea ice concentration observations (Comiso 2017). The retro-
spective predictions are performed over the period 1992–2017
with initializations on the first of each month. We restrict our
initializations to May–August because of the substantially
higher skill of these forecasts relative to initializations in ear-
lier months in many of the Arctic Ocean marginal seas
(Bushuk et al. 2022).

We calculate the MIP between the Atlantic and Pacific,
east and west of Greenland using Dijkstra’s shortest path
algorithm (Dijkstra 1959). Figure 1 shows an example of the
NW and NE MIPs calculated for 15 July 1992. Dijkstra’s
algorithm finds the shortest path between two points, calcu-
lated by summing traversed edges between nodes in a graph.
Here the nodes are interpreted as ocean grid cell centers and
the edge lengths as the great circle distances between these
centers. Only adjacent cells share edges. Moves between
diagonally adjacent ocean cells are allowed as long as there is
at least one ocean cell on the other diagonal}no strait is
implied between diagonally adjacent ocean cells when the
other diagonal is occupied by two land cells. The edge lengths
are weighted by ice extent so that only cells with ice concen-
tration greater than 15% contribute distance to the MIP. The
use of ice extent, having the 15% threshold, rather than ice
concentration, directly, is intended to make the calculation
more robust to the confounding effects of surface melt ponds
on summertime passive microwave observations. Thus, a path
with a zero MIP traverses only ice concentrations less than
15%. The algorithm finds the MIP to all ocean points starting
from a seasonally ice-free location in the Pacific Ocean at
588N, 1808. The distinction between NW and NE MIPs is
maintained by placing an artificial land strip southward from

FIG. 1. An example of NE and NW MIPs (red) calculated using
the 15 Jul 1992 sea ice concentration field. The region having sea ice
concentration greater than 15% is shown in white. The MIPs are
only defined in this region since open water contributes nothing to
the path length.
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the southern tip of Greenland. The NW and NE MIPs are
taken at the seasonally ice-free locations west and east of this
boundary, respectively. We use the length of the MIP for
verification and not the detailed path itself. Agreement of
MIP length is a necessary but not sufficient condition for
detailed path agreement although the fine structure of the
coastline and ice edge make it unlikely that two substantially
different minimal paths will agree on length.

The MIP algorithm is applied to the daily satellite sea ice
concentration observations interpolated onto the SPEAR
ocean/sea ice grid to obtain our forecast verification data.
Analysis is always performed on these daily MIPs}we never
apply the nonlinear MIP algorithm to averaged sea ice
concentrations. Figure 2 shows the number of times that given
grid cells have contributed to the MIP on the 15th of the
months July–October over our forecast evaluation period,
1992–2017. August–October are the months with the largest
trans-Arctic ship traffic (Eguı́luz et al. 2016) and so form the
core target period of interest for our predictions. The NW
MIPs and the NE MIPs in August and September are

primarily coastal, taking advantage of coastal openings in the
ice to reduce their length, while the July and October NE
MIPs can either be coastal or more direct, passing near the
pole. The large variation of October NE MIPs makes their
forecasting particularly challenging. We note that the abrupt
angles taken in some of the transpolar MIPs are due to the
limited angles available when paths are required to move
between adjacent grid cell centers. The rectangular grid
allows a maximum of eight headings in four orientations, a
constraint that does not depend on resolution. Some of the
paths might be shortened by using a more complex algorithm
that permits moves between nonadjacent cell centers. However,
the inclusion of other variables, such as sea ice thickness, in the
cost calculation would favor the optimality of the grid-adjacency
Dijkstra algorithm. Anticipating that other variables will be
included in the future, we employ the simplest Dijkstra algorithm
despite the suboptimality of some of its trajectories.

When analyzing MIPs, we shall make use of detrending to
separate subannual variability from longer-term changes.
MIPs are positive definite, and this can lead to the unphysical

FIG. 2. MIP grid counts (number of times that a grid cell is visited by the MIP) for 15 July, 15 August, 15 September,
and 15 October over the period 1992–2017. Note that only traversed points with ice cover greater than 15% are
counted since the path is arbitrary in open-ocean regions.
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situation in which the trend estimate of an MIP is negative. A
zero MIP forecast will give a trend anomaly forecast error
even if the observed MIP is also zero when the forecast and
observed negative trend estimates are different. To avoid this,
we take the MIP trend estimate to be the maximum of the
standard linear estimate and zero for the analyses presented
in our study. Thus, the MIP trend anomalym′ is given by

m′ � m 2 max a 1 bt, 0( ): (1)

where m is the MIP and a and b are the intercept and slope,
respectively, of the MIP regression on time t.

To estimate the potential for improvement of the numerical
predictions, we will compare our forecast errors with the fore-
cast ensemble spread. This spread provides an estimate of the
forecast error lower bound, the intrinsic uncertainty that
cannot be reduced by model or initialization improvement (e.g.,
Wang et al. 2013). The forecast ensemble standard deviation is
approximately the root mean square error (RMSE) of a
forecast of a hypothetical “truth” ensemble member by the
mean of the other members (Bushuk et al. 2019). For the upper
bound, the forecasts are considered usefully skillful to the
extent that they have lower error than a reference forecast that
might be employed by hypothetical practitioners making use of
recent experience. This reference forecast is the sum of the
average MIP over the previous 5 years for a particular target
day and a damped anomaly, the deviation of the MIP from its
previous 5-yr average on the day of the forecast. The 5-yr clima-
tology follows a changing climate but does not assume linear
change, which may not be warranted, especially if there is a
natural variability contribution to Arctic sea ice decline (Swart
et al. 2015; Zhang 2015; Ding et al. 2017). We expect a persis-
tence forecast to be better than the climatological forecast for
short lead times based on the observed persistence of sea ice
extent anomalies (Walsh et al. 2019) and the improvement in
short-lead-time forecast skill accompanying improvement in
sea ice concentration initialization (Zhang et al. 2022). The
forecast reverts to climatology over longer time scales by
weighting the anomaly persistence contribution to decline expo-
nentially with an MIP anomaly autocorrelation decay time scale
determined from observations.

3. Forecast skill and error analysis

Bushuk et al. (2022) showed that the SPEAR system makes
skillful seasonal predictions of summertime regional ice cover
anomalies in the regions traversed by the MIPs shown in Fig. 2
with lead times of a few months, often more skillfully than a
persistence forecast. Does this imply that the SPEAR system
will also make skillful MIP predictions? The close relationships
between the regional ice cover and MIP anomalies, shown in
Fig. 3, support this possibility. The figure shows that the NW
MIP is well correlated with ice cover in the Canadian Archipelago
and Beaufort Sea, and the NEMIP is well correlated with the ice
cover in the Kara, Laptev, and East Siberian Seas over summer
and early autumn (July–October). Both the downward trend and
trend anomalies contribute to this correlation. The correlation
between NW MIP and its regional seas extent anomalies is 0.90

and reduced only to 0.84 when these series are first detrended.
The corresponding correlations for the NE MIP and ice extent in
its regional seas are 0.95 and 0.88. Therefore, subannual fluctua-
tions account for the bulk of these close relationships and the
skillful prediction of regional ice extent on subannual time
scales presents an opportunity for seasonal forecasting of the
NW and NE MIPs. Persistence of ice thickness anomalies after
melt onset has been established as a mechanism for good pre-
diction skill for summertime ice extent (Bonan et al. 2019;
Bushuk et al. 2020).

As a preliminary to a broader evaluation later, we investigate
SPEAR_LO/iceDA’s 1 June-initialized forecasts and forecast
errors. Figure 4 compares the observed and forecast MIPs from
1 June through the first week of November. The observations
show declining NW and NE MIPs with considerable variability.
Periods of zero MIP appear sporadically early in the record and
more frequently in recent years. The Northeast Passage is open
(zero NE MIP) for some part of the summer during the last ten
years of this record. The forecasts capture the downward MIP
trends but underestimate the periods of ice-free passage. This
bias could be improved by using the ensemble median rather
than mean as the forecast at the expense of larger overall errors
due to the larger variance of sample medians relative to means.
Both the NW and NE MIP forecasts are high-biased early in
the season during melt back, with the NW MIP forecast having
the larger bias. The NE MIP forecast is also low biased late
in the season during freeze-up. The observations show some
shorter, weather time scale, MIP variations that are averaged
out of SPEAR_LO/iceDA’s ensemble mean forecasts.

The forecasts shown in Fig. 4 clearly have significant correla-
tion with the observations, both having correlations greater
than 0.9 that remain above 0.5 after detrending. We will forgo a
significance analysis because these statistics have little use for
practitioners. Rather we focus, in the error comparison below,

FIG. 3. July–October average (top) NW and (bottom) NE MIPs
and comparable total regional ice extents. The regions are defined
as in Bushuk et al. (2017). The correlations between the observed
MIPs and sea ice extent in the local seas are 0.90 (NW) and 0.95
(NE), reduced to 0.84 (NW) and 0.88 (NE) after linearly
detrending.
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on comparing the characteristic error (RMSE) of the forecasts
with those that might be made by a practitioner using recent
experience. We consider the forecasts to be usefully skillful if
they have lower RMSEs than the damped persistence refer-
ence forecast. The MIP RMSE is directly relevant to uncer-
tainty of the time and cost of crossing the Arctic Ocean

because vessel speeds are much larger in open water, approach-
ing 20 kt (1 kt ≈ 0.51 m s21), than in ice, at approximately 5 kt,
and do not incur the cost of icebreaker escort. Using these
characteristic speeds, a 200 n mi (1 n mi = 1.852 km) RMSE
would translate to an uncertainty in traversal and icebreaker
time of more than 1 day. The 160-day seasonal RMSEs of the

FIG. 4. The (left) NW and (right) NE MIPs from (top) satellite observations and (middle) as forecast from 1 Jun initialization with
SPEAR_LO/iceDA, along with (bottom) forecast errors for 1 Jun–7 Nov. Zero MIPs are unshaded. White horizontal dotted lines indicate
the first day of the months for reference. The 160-day seasonal RMSE of the MIP forecasts are 305 (NW) and 277 (NE) n mi.
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Fig. 4 MIP forecasts, 305 n mi (Northwest) and 277 n mi
(Northeast), are consequential by this standard.

To compare opportunities for forecast improvement, we
analyze the 1 June initialized forecast errors using a break-
down of the normalized squared errors due to Murphy
(1988). A slight rearrangement of Murphy’s Eq. (12) gives

s2e
/
s2o � 1 2 rfo2

( )
1 rfo 2 sf=so

( )[ ]2
1 mf 2 mo( )=so[ ]2, (2)

where se is the forecast RMSE,mf andmo are the climatological
means of the forecast and observed values, sf and so are their
climatological standard deviations, and rfo is their correlation
with each other. The first term on the right-hand side represents
error due to lack of correlation between the forecast and obser-
vations. We will refer to this term as the correlation error. The
second and third terms are due to the forecast conditional and
mean biases, respectively. These two terms represent errors that
can be removed by linear adjustment to the forecast assuming
sufficient forecast and observational data are available to
constrain the relationship.

Figure 5 shows the Eq. (2) normalized error variance terms
and totals for the 1 June–initialized NW and NEMIP forecasts.
The normalized error variances above one in June mean that
the error variance exceeds the observed variance for both NW
and NE MIPs over this period. The NE MIP error also
occasionally rises above the observed variance in later
months. Consistent with Fig. 4, the mean bias variance
dominates the June errors. After June, the correlation error
variance becomes the most important term. This term has
little variation over time and, generally, is about half the

observed variance. The conditional bias contributes the
least of the three terms. From these error variance budgets,
after June, improvements to the correlation error seem the
most promising avenue for reducing errors. However, part
of this term is intrinsic error, an unavoidable consequence
of the chaotic nature of climate anomaly evolution. We must
estimate this irreducible error so as to quantify the opportu-
nity to reduce the correlation error. The correlation error is
the error that remains after linear removal of biases and can
be considered an upper bound estimate of the irreducible
error. We note that some of the forecast errors stemming from
biases may not be amenable to linear removal, such as when
permanent ice-covered or ice-free conditions are forecast in a
region that experiences ice cover variability. These biases
would manifest partly as correlation error. Correlation error
can also stem from initialization deficiencies. In the perfect
model context, two historical forcing ensemble members predict
each other without mean or conditional bias, but have little
correlation of subannual anomalies, and hence, large correlation
error.

Figure 6 shows the standard deviation of the forecast
ensemble, an estimate of the irreducible error, alongside the
forecast error, the trend anomaly forecast error and the
renormalized correlation error from Fig. 5. These error esti-
mates are consistent in the sense that the errors left after
making the linear corrections to the forecasts lie between
the forecast error and the ensemble spread. We note that the
forecast ensemble spread estimate of irreducible error relies
upon the ability of the model to correctly simulate variability
that is unpredictable due to initial condition uncertainty

FIG. 5. The 1 Jun initialized forecast normalized error variance terms from Eq. (2) for (left) NW
and (right) NEMIPs.
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(Kumar et al. 2014). The SPEAR_LO systems, in particular,
might underestimate this uncertainty at weather forecasting
time scales because a single atmospheric state is used as a
nudging target for preparing the ensemble initializations.
However, weather time scale variability contributes little to
the observed MIP variance in Fig. 4. Five-day smoothing
reduces the observed MIP variances by only 5% (NW) and 3%
(NE). The two forecasts obtained by linear correction}by
trend fit correction (yellow lines) or linearly correcting forecast
errors (orange lines)}track each other with occasional small
relative improvements from the linear forecast correction. The
linear forecast correction can reduce errors in subannual
variability in addition to the long-term mean and trend but
the trend fit correction gives clearer guidance for model
improvement since mean, trend, and subannual variation
can have different physical causes.

We are left with two imperfect measures of the lower
bound on forecast error: the error remaining after linear
correction, which may retain some nonlinear and reducible
correlation error, and the ensemble spread, which might
overestimate predictability. Kumar et al. (2014) note that the
latter condition might come about if a model simulates exces-
sive anomaly persistence. We can check for this condition by
comparing the model anomaly autocorrelation function with
the observed. Because initialization might introduce autocorre-
lation between ensemble members through drift}an effect that
does not affect the model spread}we use a large ensemble of
historical SPEAR-LO simulations (Delworth et al. 2020) for
the autocorrelation comparison. Figure 7 shows the 30-member
ensemble average of the autocorrelation of daily anomalies
from the 1990–2020 trend for the NW and NE MIPs as well as

the average of the NASA Team and Bootstrap autocorrelations
for 1992–2017 trend anomalies. Although the observed autocorre-
lation is very noisy, model and observations show the same basic
structures with anomaly persistence growing then shrinking over
the 160-day period starting 1 June for both NW and NEMIPs.

The Fig. 7 average autocorrelations, including both NW MIP
and NE MIP, are 0.52 for the SPEAR_LO model and 0.47 for
the observations. Using Eq. (2), we can translate these numbers
into an estimate of the ratio of the perfect model MIP RMSE to
its true minimum, assuming persistence is the source of predict-
ability. To obtain the fractional underestimate of RMSE, we
take the ratio of square roots of Eq. (2) for the model and
observed autocorrelations, noting that the bias terms will be zero
for this perfect model calculation. The spurious reduction of the
RMSE of the model relative to observations due to the excess
autocorrelation, estimated this way, is about 3% {=[(1 2 0.522)/
(1 2 0.472)]1/2 2 1}. We conclude that the SPEAR_LO’s excess
autocorrelation should cause its ensemble spread to only slightly
underestimate the minimum possible RMSE.

The observed autocorrelations are also useful for calibrating
our reference forecast. We will use an autocorrelation decay time
scale that gives the same average autocorrelation as the observa-
tional autocorrelation shown in Fig. 7 over the 160-day period
starting 1 June. Therefore our damped persistence forecast,
MIPDP(t0, t) at time t0 for MIP at time t, becomes

MIPDP t0, t( ) � MIPCLIM t( ) 1 {
1 2 exp

[
2 t 2 t0( )/t]}

3 [MIP t0( ) 2 MIPCLIM t0( )], (3)

where t is 56 days. By using a uniformly damped persistence
as our reference forecast, we have not taken advantage of the

FIG. 6. The 1 Jun initialized forecast Eq. (2) correlation term RMSE (red) in comparison with
forecast ensemble standard deviation (blue), trend anomaly forecast error (yellow), and full fore-
cast error (purple) for (left) NW and (right) NEMIPs.
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temporal variations in persistence that are suggested by Fig. 7
but have also avoided overfitting these noisy observations.

Now we examine the RMSEs for our four initializations, using
average daily values over four target months. Figure 8 shows the
RMSE of daily forecasts for the months of July–October initial-
ized on the first days of May–August. Here we compare our
SPEAR_LO/iceDA forecast using sea ice concentration data
assimilation (Zhang et al. 2022) with the standard SPEAR_LO
forecast made without sea ice concentration assimilation and
our reference damped persistence forecast based on observa-
tions. We also include the error of the SPEAR_LO/iceDA trend
anomaly forecast, which linearly removes the effect of climato-
logical and trend biases, and the SPEAR_LO/iceDA forecast
ensemble spread to provide a lower bound on the numerical
forecast error.

Zhang et al. (2022) showed that sea ice concentration assimi-
lation improved forecasts primarily over lead times less than one
month. The impact of this improvement can be seen in Fig. 8 by
comparing the 1 July and 1 August initialized forecasts for those
months: the concentration assimilating initial conditions (red
bars) improves the standard SPEAR forecast (blue bars) in all
four cases, consistent with the Zhang et al. (2022) finding of
improved coastal SIC forecasts with 1 July and 1 August initiali-
zations. The damped persistence forecast (black bars) is also
competitive in these short-lead-time forecasts, providing the best
forecasts in three of the four cases. The forecast ensemble
spread (green bars) is considerably less than these forecast
errors, indicating that a large opportunity for improvement
remains. Removing the mean and trend biases only recovers
a small part of this improvement (magenta bars). Improved
initialization and simulation of subannual anomalies might play
a role in the remaining potential improvement. The opportunity
for improvement, as indicated by the reduction in error from the
damped persistence forecast to the forecast ensemble spread,
decreases to lead times of 2 and 3 months, remaining nearly
constant thereafter. In addition to the short lead improvement,

SPEAR_LO/IceDA has slightly lower overall RMSE than
SPEAR_LO so we use it as our model reference. It produces
lower RMSE than the observation-based reference forecasts
in 11 of the 15 cases for NW MIP but only 7 of the 15 cases for
NEMIP.

Figure 9 gives a summary view of forecast errors, comparing
the average over all initializations and forecast lead times shown
in Fig. 8. The raw model forecast improves upon the reference
forecast only for the NW MIP, while the bias corrected model
improves upon both the NW MIP and NE MIP reference fore-
casts. However, the ensemble spread suggests the possibility of
making forecasts with greater than 80 n mi average RMSE
reductions relative to the raw model forecasts. The trend anom-
aly forecast error indicates that more than half of the potential
improvement remains after linear correction of mean and trend
biases.

Figure 9 also shows RMSEs for the reference and raw model
forecast taken relative to the alternative Bootstrap passive micro-
wave observations in order to show the impact of errors in the
observations used for data assimilation or statistical calibration.
The impact is larger for the NW MIP, increasing the RMSEs by
about 40 n mi. The raw model forecast remains better than
damped persistence for the NW MIP but worsens relative to
damped persistence for the NE MIP. After including the effects
of observational uncertainty the raw model skill is still better
than the observation-based reference NW MIP forecast but is
now slightly worse for the NE MIP. The trend anomaly forecast
error is, unexpectedly, slightly improved when taken relative to
the Bootstrap observations. These comparisons indicate that
errors in passive microwave observations are important for
mean and trend biases but not for the prediction of suban-
nual anomalies.

4. Summary and discussion

Using 1992–2017 retrospective subseasonal-to-seasonal pre-
dictions, we have evaluated the skill of the GFDL SPEAR

FIG. 7. Autocorrelation of (left) NW and (right) NEMIP trend anomalies, showing the averages for 1990–2020 SPEAR-LO 30-member
ensemble of historical runs autocorrelations (thick) and for the average of NASA Team and Bootstrap 1992–2017 derived MIP autocor-
relations (thin).
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forecast system at forecasting the minimum Arctic sea ice
path (MIP) between the Atlantic and Pacific Oceans west and
east of Greenland, corresponding roughly to the Northwest
and Northeast Passages, respectively, at daily frequency over
the summertime. Without mean and trend bias corrections,
only the NW MIP forecasts have lower summertime average
RMSE than a damped persistence forecast based on observed
sea ice concentrations. Mean and trend bias corrections
reduce errors below damped persistence, but considerable

errors remain. Using the forecast ensemble spread as a lower
bound on the error, we find large opportunities for forecast
improvement, especially at lead times less than two months.
The larger part of the overall model forecast error is not
amenable to linear removal. These errors must consist of
some combination of the nonlinear influence of biases and
imperfect representation of subannual anomalies, either in
their initialization or simulation. We estimate the additional
error due to uncertainty in the sea ice concentration observations

FIG. 8. Monthly averages of daily SPEAR (top) NW and (bottom) NEMIP forecast RMSEs for July–October with initializations on the
first days of May–August with (red) and without (blue) sea ice concentration assimilation are compared with damped anomaly persistence
forecasts (black). The SPEAR_LO/iceDA trend anomaly forecast errors (magenta) and ensemble RMSEs (green) are also shown to help
to gauge the potential impact of forecast system error reductions.
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used for data assimilation and calibration by using a different
passive microwave dataset (Bootstrap) for validation, finding
that raw model forecast RMSEs increase and worsen somewhat
relative to the observation-based reference forecast. However,
the trend anomaly forecasts are slightly improved by this cross
validation.

The MIP forecasts can be improved most directly by reducing
biases, either using forecast postprocessing (e.g., Dirkson et al.
2019) or by improving the forecast system. Previous analyses
have identified opportunities for improving summertime skill in
the Arctic peripheral seas traversed by the MIPs. Bushuk et al.
(2022) found that statistical predictors based on simulated thick-
ness and concentration had better correlation with September
ice cover in the Beaufort Sea than the SPEAR_MED forecasts
at short lead times, indicating that SPEAR biases are degrading
forecasts in that region. Good correlations of summer sea ice
thickness and later concentrations in the Arctic peripheral
seas (Bonan et al. 2019) suggest that improving summertime
thickness initialization is a promising pathway to improved
MIP forecast skill.

In this study, the MIP calculations and forecasts were intended
to be sufficiently accurate for assessing skill and characterizing
errors. We noted that our MIP calculation only finds the minimal
path under the constraint of traversal via adjacent numerical grid
centers. A more complex algorithm could reduce these paths or,
more practically, it could include other influences on cost such as
ice thickness. Even though it significantly affects maritime trans-
port, we have omitted ice thickness in the current study so as to
enhance the potential for validation since reliable summertime
thickness observations are not currently available (Dawson et al.
2022). The passive microwave sea ice concentration observations,
while offering the longest record for calibration and validation,
are not best for operational use (Partington et al. 2003).
Multisensor sea ice analyses should be preferred for Arctic ship
routing. We showed that significant additional error is associated

with uncertainty attached to the assimilated passive microwave
observations. We expect differences between passive microwave
and multisensor sea ice observations to be at least this large and,
consequently, the associated error we diagnose to be a minimum.
The verification observations were interpolated onto the model’s
coarse grid, and no accounting was made of the ocean depths or
strait widths traversed by the MIPs. These may be constraining
factors for larger vessels. Remedying these deficiencies in the cur-
rent analysis would improve the relevance of the forecasts to
Arctic operations.
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